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Given a graphG = (V,E) and a path P , let d(v, P ) be the distance from vertexv ∈ V to path
P . A path-center is a path which minimizes the eccentricitye(P ) = maxv∈V d(v, P ) such that for
every path P ′ in G, e(P ) ≤ e(P ′), and for every subpathP ′′ ⊂ P , e(P ) < e(P ′′). Similarly, a
core is a path which minimizes the distanced(P ) = ∑v∈V d(v, P ) such that for every path P ′
in G, d(P ) ≤ d(P ′), and for every subpathP ′′ ⊂ P , d(P ) < d(P ′′). We present distributed
algorithms for finding path-centers and cores in asynchronous tree networks. We then extend these
to compute a subset-centrum path in trees which minimizes the distance with respect to a subset of
vertices,dS(v, P ) =

∑
v∈S d(v, P ), whereS ⊆ V . The time and communication complexities of

these algorithms areO(D) andO(n) respectively, whereD is the diameter andn is the number of
vertices (edges) of the network. These algorithms are asymptotically optimal.
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1. INTRODUCTION

Given a network, the location problem concerns how to
choose the ‘best’ sites to set up certain facilities to serve
the other sites. In general, one would like to set up a
facility at a ‘central’ location. Two extensively studied
criteria for centrality are:minimax (centers) andminisum
(medians) [1, 2, 3]. Acenterof a graph is a vertexc such
that the maximum distance fromc to any other vertex is
minimized. Amedianof a graph is a vertexm such that the
maximum sum of distances fromm to all the other vertices
is minimized. Alternatively, a medianm minimizes the
average distance fromm to all the other vertices. So, if the
goal is to have fast response from the facility, then we should
locate the facility at the center of the network. However, if
the main concern is the total communication cost to all the
sites, then we should locate the facility at the median of the
network.

The concepts of centers and medians have been extended
to path-centers and cores, where facilities are located along
a path. Given a graphG = (V ,E) and a pathP , let
d(v, P ) be the distance from vertexv ∈ V to pathP . In
[4], Slater defined thepath-centerof a graphG as a pathP
with minimum eccentricity. Formally, a path-center is a path
which minimizes the eccentricitye(P ) = maxv∈V d(v, P )
such that for every pathP ′ in G, e(P ) ≤ e(P ′), and for
every subpathP ′′ ⊂ P , e(P ) < e(P ′′). In [5], Morgan
and Slater defined thecore of a graphG as the pathP
which minimizes the total distance from all vertices ofG
to P . Formally, a core is a path which minimizes the
distanced(P ) = ∑

v∈V d(v, P ) such that for every path
P ′ in G, d(P ) ≤ d(P ′), and for every subpathP ′′ ⊂ P ,
d(P ) < d(P ′′). Linear-time sequential algorithms for
finding path-centers and cores in trees were given in [4]

and [5] respectively. However, no distributed algorithms
for these problems are known to date. Note that the path-
center and core problems are NP-complete in general graphs
because we can reduce the Hamiltonian path problem to
these problems [6].

In this paper, we apply thebasic tree techniqueof [7]
to obtain distributed algorithms for finding path-centers
and cores in trees. Considering the possibility of multiple
initiators in the algorithm of [7] the basic tree technique uses
at most 2n+s−2 messages andd3D/2e time, wheren is the
number of vertices,D is the diameter, ands is the number of
initiators. We also extend the concept of cores to the subset-
centrum path, and present a distributed algorithm for solving
this problem. The time and communication complexities
of these algorithms areO(D) andO(n) respectively; the
algorithms are asymptotically optimal.

We consider the standard model of an asynchronous point-
to-point communication network (e.g. [8]). The network
is represented by an undirected simple graph onn vertices
(processors) and̀ edges (bidirectional communication
links). Each processor has a unique identity. There is no
shared memory and processors communicate by message
passing. Each message containsO(logn) bits. For the sake
of time complexity analysis, we assume that each message
incurs a delay of at most one unit of time [9]. Note that the
delay assumption is only used toestimatethe performance
of our algorithms. This does not imply that our model is
synchronous, neither does it affect the correctness of our
algorithms. That is, our algorithms work correctly even in
the absence of this delay assumption.

In Sections 2, 3 and 4, we present our algorithms
for finding path-centers, cores and subset-centrum paths
respectively. Section 5 concludes the paper.
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2. PATH-CENTER

An important observation in [4, Theorem 4] states that the
path-center of a tree must contain the center. Therefore, we
propose the following two-step algorithm for finding a path-
centerQ:

(i) Locate the center ofT using the center finding
algorithm in [7].

(ii) From the center, extend a maximal pathP with
minimum eccentricity. Then shortenP to obtain the
minimal sub-pathQ of P such thatd(Q) = d(P ).

To extend a maximal pathP from the center such that
d(P ) is minimized, each vertex must store the maximum
distances it received from its neighbors during center
finding. From the stored information, a center can easily
determine whether it is the only center or one of the
two centers. LetT be rooted at the center (break ties
deterministically using processor identities). If there is only
one centerc, thenc will extendP in two directions, to the
children from which the two largest distances were received.
If there are two centers, thenP contains both centers and
the edge connecting them; then, each of the centers will
extendP in one direction, to the child (not the other center)
from which the largest distance was received. From the
center(s),〈extend〉 messages are sent to extendP . Each
vertex v receiving an〈extend〉 message on edgee marks
e as belonging toP . If v is not a leaf, then it propagates
an 〈extend〉 message to the child from which it received
the largest distance. If several choices are possible, then
break ties deterministically. In order to activate all the leaves
to start the computation ofQ ⊂ P , as a vertex sends its
〈extend〉 message to a child, it also sends an〈activate〉
message to each of its other children.

The computation ofQ is started by the leaves when they
have received either an〈extend〉 or an〈activate〉 message.
Maximum distance information with respect toP is gathered
from the leaves. While traversing toward the center, an
internal vertexv 6∈ P increments the largest of all received
distances by one. A vertex onP will merely pass the
maximum distance it received. When the root ofT receives
the maximum distance, it sends an〈short,dist〉 message on
P toward the leaves, wheredist is the maximum distance
received with respect toP . It is obvious that we can
shortenP from both ends bydist edges without increasing
e(P ). The shortened pathQ ⊆ P is the path-center. The
propagation of〈short,dist〉 stops when a vertex ofP at dist
from a leaf is reached. A vertex knows its distance from the
leaves because this information is stored previously. Every
vertex which received a〈short,dist〉message on edgee will
marke as belonging to the path-centerQ.

THEOREM 2.1.A path-center of a treeT = (V ,E) can
be found ind7D/2e time using4n + 3D/2 + s messages,
where|V | = n, D is the diameter ofT , ands is the number
of initiators.

Proof. From [7], the center(s) of a treeT can be found by
using at most 2n+D/2+ s − 2 messages ind3D/2e time,

wheren is the number of vertices,D is the diameter, ands
is the number of initiators.

A maximal pathP with minimum eccentricity can be
found usingD/2 time andn− 1 messages. Supposee(P ) is
not minimum, then there is a pathR such thate(R) < e(P ).
Let c be the center(s) ofT . From [10, Lemma 3.1],c ∈ P
and c ∈ R. The above imply that there exists a vertexv
on the path betweenc and one of the leaves ofR such that
d(v, p) < d(v, r), wherep andr are end-points ofP and
R respectively, and bothp andr are on the same side ofv
with respect toc. Then, in our algorithm,v would choose
to extend the path towardr instead of towardp. Since the
algorithm yields a pathP , this implies that such a vertex asv
does not exist. Therefore, a pathR with e(R) < e(P ) does
not exist, contradicting our assumption. The time required
isD/2 because messages are sent from the center(s) ofT in
two directions simultaneously.

KnowingP , the path-centerQ can be found usingn−1+
D−2e(P )messages andD+D/2−e(P ) time. SinceQ ⊆ P
ande(P ) is minimum,e(Q) is also minimum. Furthermore,
Q is the minimal sub-path wheree(Q) = e(P ) because the
distance from the end-points ofQ to the leaves is equal to
e(P ). The gathering of maximum distances with respect to
P requiresn − 1 messages andD time. For the marking
of Q, D − 2e(P ) messages are sent. Since this is done on
Q in both directions from the root (a center) ofT , the time
required isD/2− e(P ). �

3. CORE

In contrast to a path-center, a core is not necessarily unique
and does not necessarily pass through a median ofT

[5]. Therefore, knowing the median does not help. In
[5], Morgan and Slater presented a linear-time sequential
algorithm which computes a core of tree networks. Optimal
parallel algorithms for the computation of a core of
tree networks using tree contraction techniques have been
presented in [11, 12]; these algorithms useO(n/ logn)
processors andO(logn) time on the EREW PRAM. The
main observation used in these algorithms is that an end-
pointv of a core can be identified by finding arooted core.

We combine this observation with the basic tree technique
to obtain an asynchronous distributed algorithm for finding
cores of tree networks inO(D) time usingO(n) messages
whereD is the diameter andn is the number of vertices of
the network. We assume that all network edges have unit
weight. Our algorithm may have multiple initiators. When
the algorithm terminates, every vertex knows whether it is
a vertex of the computed coreP and which of its incident
edges are inP . The algorithm can be easily modified to find
a core in a tree network where edges have arbitrary positive
weights. Lemma 3.1 states the effect on the sum of distances
as a pathP is being extended to include more vertices.

LEMMA 3.1. [5, Section 2]Let v be a vertex on a core
P where |P | > 1, and let the vertices adjacent tov be
u1, u2, . . . , uδ(v). Let Tui denote the subtree rooted atui
not containingv. The following conditions hold for a vertex
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w ∈ Tui , 1 ≤ i ≤ δ(v): (1) If ui 6∈ P , thend(w,P ) =
d(w, v). (2) If ui ∈ P , thend(w,P ) < d(w, v).

That is, if P is extended fromv to ui , ui 6∈ P , then
the distances from verticesw ∈ Tui to P will decrease.
However, an arbitrary choice ofui does not guarantee that
the extended path is a core. Let%v→u denote the path from
v to u in T . In [11, Lemma 1], the total decrease in sum of
distances fromw ∈ Tui to P (extended fromv) is called the
reduction, designated asreduc(%v→ui ).

DEFINITION 3.1. [11, Lemma 1] (reduction)LetQ be a
path ending ats. The total reduction ind(Q) by extending
Q to include the vertices of%s→v is reduc(%s→v) =∑ |Tw|,
wherew is a vertex on%s→v excludings, andTw consists of
w and those subtrees rooted at the neighbors ofw which do
not contains.

LEMMA 3.2. (1) A core connects two leaves ofT [12,
Lemma 1]. (2) LetPr be a rooted core, i.e. a path containing
r which minimizes the sum of distances from other vertices
to Pr . Then a core andPr must share at least one common
vertex [12, Lemma 2]. (3) Let tree T be rooted at an
arbitrary vertexr. A vertexv is in a core if reduc(%r→v)
the maximum possible value[11, Lemma 3].

Note that there may be several cores ofT , so that the
choice ofv in Lemma 3.2(3) may not be unique. To find
a core of a tree network, we first root the networkT at
an arbitrary vertexr. Then we find an end-pointv of a
core P of T by using Lemma 3.2(3). Oncev is found,
we extend a coreP from v so that maximum reduction is
achieved. Since more than one core is possible, we break ties
arbitrarily. The algorithms described in Lemmas 3.3 and 3.4
follow the algorithm of [5], except we combine their method
with the basic tree technique of [7] to obtain a distributed
algorithm. The non-trivial part is that the complexity of our
distributed core algorithm is less than the complexities of
simply running a distributed rooted core algorithm twice.

LEMMA 3.3.Given a tree networkT = (V ,E), an end-
point v of a core is known at a saturated vertex within
d3D/2e time using at most2n + s − 2 messages, where
n = |V |, D is the diameter ofT , and s is the number of
initiators.

Proof. We apply the basic tree technique to define a root
r which is a saturated vertex. During the backward phase,
the size of the traversed subtree and the largest reduction
obtainable by extending a path into that subtree are reported.
When a leaf̀ is activated, it sends a〈parent, |T`|, reduc=
1〉 message to its only neighbor. When an internal vertex
u has received a〈parent, |Ti |, reduci〉 message from all
but one of its edges, it marks the edge on which the
maximum reduci is received. If the maximum reduction
is reported on several edges, then mark one of these edges
arbitrarily. Vertexu also computes the size of its subtree
|Tu| = 1+∑ |Ti |, and its reductionreduc(%u→`) = |Tu| +
max(reduci ), wherei are the children ofu. Thenu sends
a 〈parent, |Tu|, reduc(%u→`)〉 on the edge from which no
〈parent, size, reduc〉 message was received, if such an edge

exists. From [10, Lemma 3.1], either one or two vertices
become saturated. If there is only one saturated vertex, then
it is chosen as the rootr. Otherwise, there are exactly two
adjacent saturated vertices contending to be the root. Ties
are then broken by unique processor identities; for example,
the processor with the smaller identity wins.

At vertexr, r knows which of its incident edges leads to
a vertexv such thatreduc(%r→v) is maximum. This marked
path with the maximal reduction satisfies Lemma 3.2(3),
so an end-pointv of a core ofT is computed correctly
at r. Since we are merely using the basic tree technique
to gather information concerning the sizes of subtrees and
reductions, the time and messages used ared3D/2e and
2n + s − 2 respectively. A message size ofO(logn) bits
suffices because the size of a subtree is bounded byn, and
reduction is bounded byn2/2. �

Let Tr denote the tree network rooted atr. Note that
any vertexu of Tr knows the maximum reduction obtainable
from each of its children after saturation atr. The only piece
of information not available atu is how much reduction it
can obtain from the direction of its parent. From the rootr of
Tr , we have a marked path leading tov wherereduc(%r→v)
is maximum. The rootr will then send a message along the
marked path to saturate every vertex betweenr andv. The
size of subtree and reduction (from the direction ofr) are
updated at each vertex along the path and are passed with
the message as it propagates towardv. The saturation ofv
can be regarded as re-rooting the tree network atv because
by the timev becomes saturated, every vertex inTv knows
the reduction obtainable from each of its children inTv .

LEMMA 3.4.Given an end-pointv of a coreP of a tree
T , the other end-pointv′ of P can be found by finding a
vertexv′ such that reduc(%v→v′) is maximized.

Proof. Given an end-pointv of a coreP of T , and by the
definition of a core, the other end-pointv′ of P (which by
Lemma 3.2(1) must be a leaf) can be found by extending a
path fromv in the direction which maximizesreduc(%v→v′).
Then, the unique path connectingv to v′ is optimal as a core.
Note that the choice ofv′ might not be unique. �

THEOREM 3.1.Given a treeT = (V ,E), a core ofT can
be computed by exchanging2n + 2D + s − 2 messages in
3D time, wheren = |V |,D is the diameter ofT , ands is the
number of initiators.

Proof. The correctness of the algorithm follows from
Lemma 3.2 and Lemmas 3.3, 3.4. From Lemma 3.3, the first
end-pointv of a coreP ∈ T is known at a saturated vertex
r within d3D/2e time by exchanging at most 2n + s − 2
messages. Supposer is saturated at timek + D after the
algorithm starts, wherek ≤ dD/2e. Thend(r, v) is bounded
byD − k, so the backward phase of the basic tree technique
and the propagating of messages to re-rootT at v takes at
mostD time altogether. That is, the end-pointv of a core
is saturated within 2D time after the algorithm starts. The
number of messages sent fromr to saturatev is bounded
by D. To trace a core fromv to v′ requires at most an

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999



612 E. JENNINGS

additionalD messages and time. Summing these, a coreP

of a tree network can be computed within 3D time using at
most 2n+ 2D + s − 2 messages. �

4. GENERALIZATION TO SUBSET-CENTRUM
PATH

Suppose we are not interested in minimizing the total
distance from a facility to all the sites, but in minimizing
the total distance from the facility to certain important
sites. We define theS-distance of a pathP as dS(P ) =∑
v∈S d(v, P ). Given a graphG = (V ,E) and a subsetS

of vertices, where|S| = k, thek-centrum path is defined as
a pathP such thatdS(P ) is a minimum. Intuitively, each
vertexv of S contributes a distance ofd(v, P ) to dS(P );
vertices outside ofS contribute nothing todS(P ).

Given a tree networkT = (V ,E) and a subsetS ⊆ V , the
strategy is to first compute a minimal subtreeTS of T such
that all the verticesS are contained inTS . Then, we find a
pathP in TS such thatdS(P ) is a minimum. Our algorithm
contains two main phases. In phase one, we use the basic
tree technique to defineTS . In phase two, we modify our
core algorithm (Section 3) to find ak-centrum path inTS .
Obviously, the minimum subtree containing all the vertices
of S must not have any leaves which are outside ofS.

From a simple analysis, we obtain that phase one requires
at most 2n + s − 2 messages andd3D/2e time, where
n = |V |, D is the diameter ofT and s is the number of
initiators. Phase 2 is an execution of the modified core
algorithm onTS with a single initiator. The modification
is in the way subtree sizes and reductions are computed.
SupposeTS hasnS vertices and diameterDS . Then, this
phase uses 2nS + 2DS − 1 messages and 3DS time, where
nS ≤ n andDS ≤ D, becauseTS ⊆ T and bothTS andT
are trees. Thus, the total time and messages required are at
most 4n+ 2D + s − 3 andd9D/2e respectively.

5. CONCLUSION

In this paper we presented communication and time optimal
asynchronous algorithms for finding central paths in tree
networks. These algorithms are decentralized in the sense
that any subset of vertices may start the algorithms. We first
studied the path-center where the maximum distance from
any vertex to the path is minimized, theminimaxcriterion.
We then studied the core which minimizes the average
distance from all the vertices to the core, theminisum
criterion. We extended these to find a subset-centrum path
which minimizes the total distance from the path to a subset
of vertices. For future research, we intend to unify these
results. Instead of a pre-specified subset ofk vertices,
we would like to find ak-centrum path for any subset of
k vertices. More specifically, we would like to find a shortest

path which minimizes the total distance from the path to
any subset ofk vertices in the tree. Fork = 1, this
problem is equivalent to finding a path-center. Fork = n

(n being the number of vertices in the tree), this becomes
the same as finding the core. A naive approach to solve this
problem for generalk is to compute all the possible subsets
each containingk vertices. Then compute the subtreeTS
corresponding to each subset ofk vertices and apply our
subset-centrum algorithm onTS . Finally, choose the path
with the minimum total distance. This approach can be
costly depending onk. We seek an efficient algorithm for
this problem.
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